If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9y2 + 8y + 124 = 0 Reorder the terms: 124 + 8y + 9y2 = 0 Solving 124 + 8y + 9y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 13.77777778 + 0.8888888889y + y2 = 0 Move the constant term to the right: Add '-13.77777778' to each side of the equation. 13.77777778 + 0.8888888889y + -13.77777778 + y2 = 0 + -13.77777778 Reorder the terms: 13.77777778 + -13.77777778 + 0.8888888889y + y2 = 0 + -13.77777778 Combine like terms: 13.77777778 + -13.77777778 = 0.00000000 0.00000000 + 0.8888888889y + y2 = 0 + -13.77777778 0.8888888889y + y2 = 0 + -13.77777778 Combine like terms: 0 + -13.77777778 = -13.77777778 0.8888888889y + y2 = -13.77777778 The y term is 0.8888888889y. Take half its coefficient (0.4444444445). Square it (0.1975308642) and add it to both sides. Add '0.1975308642' to each side of the equation. 0.8888888889y + 0.1975308642 + y2 = -13.77777778 + 0.1975308642 Reorder the terms: 0.1975308642 + 0.8888888889y + y2 = -13.77777778 + 0.1975308642 Combine like terms: -13.77777778 + 0.1975308642 = -13.5802469158 0.1975308642 + 0.8888888889y + y2 = -13.5802469158 Factor a perfect square on the left side: (y + 0.4444444445)(y + 0.4444444445) = -13.5802469158 Can't calculate square root of the right side. The solution to this equation could not be determined.
| y^3+xy-12=0 | | 3+17+8=8+x-3 | | 50x+19(452-x)=13393 | | 6x+6(x-20)=576 | | Y^2+3y=-6 | | f(x)=x^4-14x^3+50x^2-14x+49 | | x+0.30(4)=0.80(x+4) | | -5f+6=-7f+15 | | ln(x+1)=20 | | 3z/8-6=4 | | 3780=27000(0.07t) | | Z/10-9=3 | | 2(x+4)=6-x | | S*6-34=92 | | 28x-19=3(7x-8)+7x+5 | | 25x^2-4x+1=0 | | 8(p-1)=6(p-1) | | 40-5y=-3y | | T/6-7=14 | | -sin(pi/4*x)*(pi/4) | | -sin(pi/4*x)*pi/4 | | -4(6x-4)+7=-24x+23 | | (55h^9p^10)/(-5hp^10) | | 1.2x+x=50 | | 0.16(y-9)+0.06y=0.02y-2.8 | | 8(p-1)=6(m-1) | | -5(x+8)+2=-38 | | 2w+2x(3w)= | | 2(x-5)=6x | | y=(7x^3-8x^2) | | y=(7x^3+-8x^2) | | y=(7x^3+-8x^2)2 |